On the Normal Bundles of Smooth Rational Space Curves

نویسنده

  • D. Eisenbud
چکیده

in this note we consider smooth rational curves C of degree n in threedimensional projective space IP 3 (over a closed field of characteristic 0). To avoid trivial exceptions we shall always assume that n ~ 4 (this does not hold however for certain auxiliary curves we shall consider). Let N = N c be the normal bundle of C in IP 3. Since degel(IP3)=4, and d e g c l ( l P 0 = 2 , we have that d e g c l ( N ) = 4 n 2 . By a well-known theorem of Grothendieck the bundle N is a direct sum of two line bundles. Hence N ~ O c ( 2 n l a ) G O c ( 2 n 1 +a) for some non-negative a=a(C), which is uniquely determined by C. The question we would like to answer is an obvious one: which values of a occur? We shall show (Theorem 4 below) that a value a occurs if and only if 0_< a <-n 4 . Since for every smooth space curve the normal bundle is generated by global sections we have in any case that Nc~-Oc(ml)GOc(m2), with ml, m z >=0, therefore Hi(C, N)=O. It follows [K, p. 150] that C represents a smooth point on the Chow variety Ch(3, 1, n) of effective cycles of dimension 1 and degree n in IP 3. Since the set of all smooth rational curves with a fixed degree is obviously connected, we see that the smooth C's represent a smooth, irreducible, 4n-dimensional (Zariski-)open subset S of Ch(3, 1, n). In a for thcoming paper [ E V ] we shall prove the following

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small rational curves on the moduli space of stable bundles

For a smooth projective curve C with genus g ≥ 2 and a degree 1 line bundle L on C, let M := SUC(r,L) be the moduli space of stable vector bundles of rank r over C with the fixed determinant L. In this paper, we study the small rational curves on M and estimate the codimension of the locus of the small rational curves. In particular, we determine all small rational curves when r = 3.

متن کامل

Minimal Rational Curves in Moduli Spaces of Stable Bundles

Let C be a smooth projective curve of genus g ≥ 2 and L be a line bundle on C of degree d. Assume that r ≥ 2 is an integer coprime with d. Let M := UC(r,L) be the moduli space of stable vector bundles on C of rank r and with the fixed determinant L. It is well-known that M is a smooth projective Fano variety with Picard number 1. For any projective curve in M , we can define its degree with res...

متن کامل

ar X iv : m at h - ph / 0 51 10 53 v 1 1 6 N ov 2 00 5 Normal bundles to Laufer rational curves in local

We prove a conjecture by F. Ferrari. Let X be the total space of a nonlinear deformation of a rank 2 holomorphic vector bundle on a smooth rational curve, such that X has trivial canonical bundle and has sections. Then the normal bundle to such sections is computed in terms of the rank of the Hessian of a suitably defined superpotential at its critical points. MSC: 14D15, 14H45, 83E30 PACS: 02....

متن کامل

A Gieseker Type Degeneration of Moduli Stacks of Vector Bundles on Curves

We construct a new degeneration of the moduli stack of vector bundles over a smooth curve when the curve degenerates to a singular curve which is irreducible with one double point. We prove that the total space of the degeneration is smooth and its special fibre is a divisor with normal crossings. Furthermore, we give a precise description of how the normalization of the special fibre of the de...

متن کامل

On Frobenius-destabilized Rank-2 Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. Let MX be the moduli space of semistable rank-2 vector bundles over X with trivial determinant. The relative Frobenius map F : X → X1 induces by pull-back a rational map V : MX1 99K MX . In this paper we show the following results. (1) For any line bundle L over X , the rank-p vector ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005